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C. D. Sfatos, A. M. Gutin, and E. I. Shakhnovich*
Department of Chemistry, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02188
(Received 29 December 1992)

A two-letter random copolymer with attraction between similar monomers and repulsion between
different ones is investigated using the replica method. This type of interaction favors microphase
separation in a compact state of a polymer or in a melt. Frustrations between interactions and
polymeric bonds may lead to a freezing transition in a phase where only a few conformations
dominate and replica symmetry is broken. Our analysis reveals that stiff polymers have a frozen
phase and do not undergo transitions to a phase with a microdomain structure. In flexible polymers,
the microphase transition may occur before freezing. Then a new frozen phase with microdomain
structure is found and studied. A complete phase diagram is constructed for the two-letter random

copolymer.

PACS number(s): 61.41.+e, 87.15.Da, 64.60.Cn, 64.60.Kw

I. INTRODUCTION

In recent years the problem of random copolymers has
attracted considerable attention [1]. Theoretical research
was motivated by the highly unusual behavior of pro-
teins. The key question in the protein research remains
how a unique frozen conformation is encoded in the one-
dimensional sequence of amino acids in the chain and
how this conformation is reached in the folding process
[2]. The first step to address this problem is to study
the random heteropolymers and compare them with pro-
teins to see which features come from general properties
of polymeric structure and heterogeneity and which ones
are due to evolutionary selection.

The simplest model to investigate the properties of
polymeric structure and heterogeneity has been described
by a Hamiltonian that contains a random quenched set
of interaction potentials B;; for monomers ¢, j which are
in contact. In the spirit of the Sherrington-Kirkpatrick
(SK) model (3] the B;; interactions were taken as inde-
pendent random values [4-6]. This model will be referred
to as the independent-interaction model.

The independent-interaction model was solved and a
frozen phase with replica symmetry breaking (RSB) was
obtained [5,6]. In this frozen phase only a few confor-
mations dominate. It was found [7] that for a significant
fraction of random sequences only one conformation is
populated in the frozen phase. This phase can then de-
scribe the protein native structure. In three dimensions
the solution gave a one-step RSB. This means that the
random-energy model (REM) of Derrida (8] is a good
approximation for heteropolymers in three dimensions.
This result justifies other approaches to the heteropoly-
mer problem based on the REM [9].

The heteropolymer model is effectively infinite-ranged
since it allows interactions between all possible pairs of
monomers without restrictions with respect to the posi-
tion of these monomers along the polymer chain. The
infinite-range SK model probably is not appropriate for
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the description of real spin glasses since the positions
of the interacting sites are fixed on a lattice. There-
fore, interactions between neighbors are intuitively much
more important than long-range interactions. The poly-
mer problem is fundamentally different from the spin-
glass problem. In polymers the monomers are free to
move in space as the polymer goes from the one config-
uration to the other. Hence, the strength of interactions
between monomers is independent of their distance along
the chain but depends only on the kind of the interacting
monomers. Therefore, the infinite-range nature of the
independent-interaction model is physically meaningful
for the study of heteropolymers.

The heteropolymer problem, however, should be de-
scribed by a random sequence [10], i.e., a set of random
values {o;} characteristic for each monomer. This model
will be referred to as the sequence model. In this model
the interaction potentials B;; are correlated. The se-
quence model seems to be more realistic for the descrip-
tion of a real heteropolymer which consists of a random
sequence of monomers. In the case of a “two-letter” ran-
dom copolymer [11-15], the sequence model is the only
one that can be used to describe the problem. In this
model the random values {o0;} take only the values *1.
In the two-letter model, when similar kinds of monomers
attract each other and different ones repel each other
there is an energetic preference for separation between
monomers of different kinds.

It was previously suggested [10] that the two-letter se-
quence model is not frustrated in analogy with the Mattis
model of spin glasses [16]. This suggestion misses the im-
portance of the polymeric effect. The two-letter sequence
model is frustrated due to competition between the ten-
dency for phase separation and the polymeric bonds. In
polymers the thermodynamic variable is the position of
monomers. Due to the polymeric effect the position of
a monomer is not independent from the position of its
neighbors. In a random sequence, if a monomer of kind
A is placed inside an A-rich region it will bring along
some monomers of kind B. Then some unfavorable A-B
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contacts appear. This frustration is very important and
as we will see in the present work it gives rise to a freezing
transition with RSB.

Until recently such a frozen state had not been pre-
dicted. Only very weak microphase separation (MPS)
was predicted without RSB [11]. On the level of mean-
field theory, the MPS transition was found to be third
order. A later discussion of fluctuations predicted a first-
order transition [17]. The same approach was applied to
the case of sequences with small correlations along the
contour and similar mesophases were predicted [18-20].
However, another calculation [12] predicted RSB in a
two-letter random copolymer in low dimensions using
high-temperature expansion.

Recently we have performed a mean-field calculation
where frozen states were predicted as a result of the frus-
tration in the two-letter-code model [21]. The predicted
RSB scheme was the same as in the previous solution of
the independent-interaction model. On the level of mean
field it was shown that when freezing occurs the MPS
transition is prevented at any lower temperature.

In the present work we investigate the effect of contacts
between neighboring monomers which become significant
in flexible chains. We show that this effect can reduce the
freezing temperature below the MPS transition tempera-
ture. Therefore, MPS can occur before freezing. In that
case the frozen phase that appears at a lower temperature
also has microdomain structure.

In Secs. II and III we present the solution of the se-
quence model and the resulting frozen phase. In Sec. III
we also show how freezing prevents MPS. In Sec. IV we
introduce a novel treatment of fluctuations of the order
parameter that describes freezing and we demonstrate
how an increase in flexibility can reduce the freezing
temperature below the MPS transition temperature. In
Sec. V we describe the MPS transition occurring before
freezing and in Sec. VI we present the complete phase
diagram and discuss the results obtained.

]
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where ( ),y denotes an average over different sequences and U}

in replica a. We can rewrite Eq. (2.4) as
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II. THE MODEL AND DEFINITION
OF THE ORDER PARAMETERS

The random AB-type copolymer is described by a
Hamiltonian that takes into account the self-interactions
between monomers as

M=% BiU(ri—r)),

irg

(2.1)

where the conformation of the polymer is described by
the coordinates of its monomers {r;} and U(r; — r;) is a
short-range potential. The binary interaction virial coef-
ficient is [13]

B;; =2[By +A(0'z‘+0'j) +XU¢0'J']. (2.2)

The sequence of monomers is described by a quenched
set of random values {o;} with equal probabilities for
the two types of monomers o; = 1 if monomer ¢ is
of type A and o; = —1 if it is of type B. When
the interactions between similar monomers are equal
(Baa = Bpp) then A = 0. The composite Flory pa-
rameter x = (Baa + Bpp)/2 — Bap will be negative in
the case of interest where similar monomers attract each
other.

In order to average over quenched disorder we use the
replica trick which requires averaging the nth power of
the partition function. We need to include the elastic
term g(r$,,; —ry) for replica o

g(r?+1 - (2-3)

1 (x%, , — rq)2
@) = A b
r5) (2ra?)3/2 exp[ 242 } :

Then the n-replica partition function is

(2.4)

av

= U(ry —r}) with r{ the position of the ith monomer

av

(2.5)
with b = —x/T to be positive in the case of interest, although this approach can be generalized to either sign of b.
By performing a Hubbard-Stratonovich transformation of the variable
> 06 - R
i
the second exponential of Eq. (2.5) can be rewritten as
1 _
/ DY, (R) exp [—E za: / dR1dR2 T, (R1) T4 (R2)U(R; — Rg) + zq: / dRY,(R) ;aia(rg - R)}. (2.6)
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Then we average over disorder. Instead of +1 we can consider a Gaussian distribution of 0;’s as exp[—0c?/2/i%]. This
corresponds to the fact that the interactions between different sites of the chain are not on the level of one monomer.
Instead, parts of the chain interact due to the finite stiffness of the chain. Therefore, a coarse-grained field {o;} with
Gaussian distribution of the continuous variables o; can replace the discrete +1 values. However, this does not change
the generality of our approach as it will be discussed later. Also, by taking Gaussian distribution we generalize this

method for random sequences with more than two kinds of monomers.

After the disorder average we set

@a(Rg) = 2—1b- /deU_l(Rl - Rz)‘I’a(Rl)

and obtain for the n-replica partition function

< / D®o(R) exp [—1—;,9 za: / dRpf,(R)]

xexp|5 S [ dRudRa®a(Re) a(RAU(Rs - R

22> Y [ dR;dR| ®,(R})U(R; — RY) / dR2dR,®5(R,)U (R, — ’2)6(r?—R1)6(rf—R2)]> :
i a,B

where ()¢n represents a thermal average over all configu-
rations of all replicas and includes multiplication by the
elastic term g(r§,; — r§). We also define p = 2fi and
pa(R) = 3, 6(r? — R) the density of the system.

In addition to the By attraction term there is a three-
body repulsion that has not been explicitly included in
our Hamiltonian. These two terms describe the tran-
sition to a globule [22]. We assume that the globule is
maximally compact and with constant density. The tran-
sition is a purely homopolymeric effect and we will ignore
these terms in what follows.

We introduce the order parameter

Qap(R1,R2) =D 86(rF —R1)8(r{ —Rp).  (2.9)

|

a,8 k#0

< / D®,, (k) exp [—v D0 [bbas - pzszaﬁ(k)]<I>a(k)<I>ﬁ(—k)] > ,
th

where V is the volume of the system, k is the wave vector,
Qop(k) and ®(k) are the Fourier transforms of the or-
der parameters. We consider only nonzero wave vectors
because ®(k = 0) = 0.

The parameter Qqs(R1,R2) represents the correlator
between the conformations of two replicas. It shows the
extent to which the conformation of replica a overlaps
with the conformation of replica 8. It is well known
from the theory of the Sherrington-Kirkpatrick model
that there is a correspondence between the overlap of
replicas and the overlap of pure states [23]. In the case
of polymers these pure states are the conformations of all
possible folds.

If two folds are totally different then the corresponding
Qqop Wwill be zero. In the opposite extreme, if two folds

(2.7)

th
(2.8)
[
From this definition we see that
/deQaﬂ(Rth) = pp(Ra2). (2.10)

Since we are considering the case of a collapsed chain of
constant density throughout the globule the density must
be independent of position. Therefore, Eq. (2.10) implies
that Qq5(R1, R2) = Qap(R1 — R2). This argument also
applies to the case of an incompressible melt. With these
definitions and by considering the potential U(R; — R3)
as a 6 function Eq. (2.8) becomes after Fourier transfor-
mation

(2.11)

f

are identical then Qug(R1,R2) = p6(R1 — Ry) where p
is the density. We can express the intermediate cases of
similarity between folds by writing the order parameter
in terms of a function g with unit scale [6] as

R:i - R
Quap(R1 —Rp) = '}‘%‘Paﬁ (1—2‘>
t

Rt (2.12)

with [Qus(R1 — Rz)dR1dR2; = N. This means that
replicas repeat each other within some scale of fluctua-
tions R; as shown in Fig. 1.

We can evaluate Eq. (2.11) by switching to Qqp vari-
ables. The corresponding entropy for this change of vari-
ables is
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In 5{Qap} = <6(Qaﬁ(Rla Ro) - Z 8(rg — R1)8(r? — Rz))>

(2.13)
th

According to the previous discussion this constraint corresponds to confinement of the chain within a tube of
diameter R;. The corresponding loss of entropy scales as —1/R2. This result was obtained both from scaling
arguments [24] and from rigorous calculation on the level of mean field [5,6].

We can rewrite (2.11) in terms of Qqg,

(Z™)ay = /DQaﬁ exp[—E{Qap} + S{Qus}]-

The effective energy term is given by

E{Qaﬁ} =In / D(Da(k) €xp I:"V Z Z[b5aﬁ - ”2b2Qaﬁ(k)]<pa (k)éﬂ(_k)] .
a,B k#0

The energy in terms of Q4 (k) is found by the integration
of the Gaussian integral and is followed by the mean field
with respect to Qo3. The Gaussian integral gives

/ dk In[det Pag(K)] (2.16)

with Pag(k) = bbag — pu2b2Qqp(k). We notice that the
result in (2.16) corresponds to the summation of the ring
diagrams in the high-temperature expansion approach of
Ref. [12]. This means that only the ring diagrams con-
tribute in the Gaussian case.

The determinant of the P matrix will be evaluated ex-
plicitly by using the Parisi ansatz [25] in Sec. IIL. In a
qualitative approach, however, we can expand the deter-
minant and get terms of the form

> b / dkQap(k)Qys(k) -, (2.17)
)

[CH TN

where b are the diagonal elements of the P matrix, n is
the number of replicas, m is the number of @ terms, and
the sum is taken over all pairs of different replicas. We
can easily verify that

Qaﬁ (k) = P¢aﬁ(Rtk)'

By setting k' = R;k the three-dimensional k integral of
Eq. (2.17) can be written as

(2.18)

pm ’ ~ "~ ’
85 [ dKbask)ra@c) -
g

/

FIG. 1. A chain inside a tube corresponds to a fold defined
to scale R;:.

(2.14)
(2.15)
-
We then see that the free energy behaves as
A A
F{R:} = 7 + B (2.19)

In a mean-field theory for n < 1 replicas we must find
the maxima of the free energy F{R;}. From the form
of Eq. (2.19) we can see (Fig. 2) that there are two such
maxima at R; = oo and at R, = v!/3 where v is the
excluded volume.

Since the size of R; corresponds to the degree of over-
lap between stable folds the existence of only two such
maxima implies that the replicas should be divided into
groups as follows: Replicas within each group will coin-
cide at the microscopic scale. Replicas in different groups
will have entirely different conformations. We can con-
struct a Parisi-type hierarchical matrix for the order pa-
rameter with the form

Qup = p6(R1 — R3) for «, 8 in the same group
=30 for a, # in different groups

(2.20)

and carry out the calculation on the level of a mean field
for Qqp. This is described in the next section.

v=1/3

1/R¢

FIG. 2. Free energy of n replicas plotted vs the reciprocal
scale (1/R:) of the order parameter Q (for n < 1). The ex-
cluded volume v*/? is the limiting microscopic scale. Two val-
ues of R, correspond to stable states, R, — oo and R; = v!/3.
Intermediate values of R; correspond to unstable states.
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III. FREEZING TRANSITION PREVENTS
MICROPHASE SEPARATION

In the preceding section we gave some qualitative argu-
ments in order to introduce a RSB scheme for the order
parameter Qo3(R1 — R2). According to Eq. (2.20) we
have

Qup(k) = { p for a, B in the same group (3.1)

0 for o, in different groups .

In order to calculate Eq. (2.11) on the level of mean
field with respect to Qqp(k) we will transform to the
continuous representation of the Parisi matrix [25]. If
we set Mag(k) = —p2b2Qqp(k) for the off-diagonal ele-
ments, this matrix has eigenvalues [6,26)]

. 1
Az) = b / dy M(y) — zM(z), (3.2)

where b = b— u2b2p, the diagonal elements of the matrix,
and M(z) is the Parisi function in the continuous repre-
sentation of the hierarchical matrix in the n — 0 limit.
In that case

M(z) = { ~ub%p, x> (3.3)

0, =< xo.

The parameter xo corresponds to the number of replicas
inside one group. We can see from Eq. (3.2) that since
M(z) < 0 and 0 < zo < 1, RSB allows the eigenvalues
of the P,g matrix to remain positive and therefore the
Gaussian integral (2.11) can be estimated. We need to

calculate
S o [det Paﬂ] =S Y glax

k#£0 k#0

with ); the different eigenvalues and g; the corresponding
degeneracies. It can be seen from Eq. (3.1) that Qqs(k)
does not depend on the wave vector k. Therefore, the
sum over different k’s will simply be replaced by a factor
related to the excluded volume cutoff. In the continuous
representation [26]

ldx
In[det Pag] = — / 2 )] (3.4)
0
and combining (3.2) and (3.3)
b—b2upry, T<=x
Az) = { b 2o an 0 (3.5)

In order to calculate the free-energy density we need to
evaluate the entropy change due to the constraint that
the replica conformations satisfy Eq. (2.20). Replicas
that belong to the same group coincide within a tube of
width Ry ~ v'/3. We know that because of the poly-
meric effect, after fixing one monomer we must place the
next one in a volume a®. There are a3/v different ways

to do this so the corresponding entropy is In(a®/v) per
monomer. However, for the second replica in the same
group and all subsequent ones we must restrict the posi-
tion of the next monomer to one place since the replica
conformations coincide within the group. That will hap-
pen zo — 1 times in the group and for all n/z¢ groups.
Therefore the corresponding loss of entropy is

n v

and we will refer to it as Nns/xo in what follows. It is im-
portant to notice that the parameter s increases as flex-
ibility increases. Combining (3.4) and (3.5) and adding
the entropy contribution from Eq. (3.6) we obtain the
free-energy density

In(1 — bu?
f($0) =lnb+ n( ( Pwo) _ i‘ (37)
n Zo To
Optimization with respect to zo gives
YZo
- _ - = 3.8
Tg—— In(1 —yxzo) +s=0 (3.8)
with v = bu2p.

This equation always has a solution z¢ = g(s)/y with
v = +'/T and 7/ = —xu?p. Thus the solution has the
form zo = T /T, below T,. Above T, we have zo = 1.
According to the standard interpretation of the zo pa-

rameter [27]
Io = 1- Z Piz,
B

where P; is the the Boltzmann factor of each conforma-
tion. Freezing occurs when zo < 1. The smaller the value
of z¢ the fewer the dominant conformations.

The transition temperature is T, = v/ /g(s). Equation
(3.8) shows that any solution for zo satisfies yzro < 1.
From Eq. (3.8) we can obtain a solution in the lowest
non-vanishing order in zo. Then zo = s/2/y or

Zo T and T, =+ /s'/2.

= ’_)’778_1/-5 (3.9)

It is now clear that RSB stabilizes the integral of Eq.
(2.11) through Eq. (3.2) and prevents MPS. We can cal-
culate the correlations (mq (k)mqo(—k)) of the parameter
me(R) =Y, 0:6(r¥ — R) which shows the difference be-
tween densities of monomers A and B. We calculate the
n-replica partition function after adding to the Hamilto-
nian a source term

/ dR Y ho(R) D 0:i6(rF — R).
« 4
Integration of an expression similar to Eq. (2.11) gives
1
[Teo EPBECINEY

+13 ha(k)[P‘l]aghg(—k)] . (311)
o,

(3.10)
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Calculation of the second functional derivative results in

- 1
(Mo (k)ma(—k)) = [P aa — 3

The k dependence vanishes because of the form of
Qop(k) introduced in Eq. (3.1). Using the formula de-
rived in [26] for the diagonal elements of the inverse Parisi
matrix we find

(3.12)

(Ma(l)ma(-k)) = g— (3.13)

(1 —9zo)

Above the freezing transition point o = 1 and the
correlation function increases (see Fig. 3) as the temper-
ature decreases (y ~ 1/T,b ~ 1/T). Below the freezing
point vzg is independent of temperature and according
to Eq. (3.8) vxp < 1. Hence the MPS transition point
is never reached. In the annealed case there is no freez-
ing and o = 1. Then we can see from Eq. (3.13) that
there is a temperature at which the correlation function
diverges signifying MPS as shown in Fig. 3.

It is important to notice that the above result comes
from a mean-field treatment with respect to the order
parameter Qq.5(R1 — Rgp). In the next section we will
estimate the effect of fluctuations of this order parameter.

IV. EFFECT OF THE FLUCTUATIONS
OF Q.3 ON FREEZING TEMPERATURE

In the preceding sections the potential was taken as a
6 function and the k dependence was omitted. Introduc-
tion of a finite range in the potential does not change the
results obtained in Sec. III. In particular, the solution
obtained from Eq. (3.8) for z¢ will always stabilize the
Gaussian integral. Introduction of a range in the poten-
J

é \
3
T, T, T
FIG. 3. The correlation function of the micro-

phase-separation order parameter diverges at some temper-
ature T, for the annealed case. In the quenched case, the cor-
relation function becomes independent of temperature. When
freezing occurs first, it prevents microphase separation.

tial will simply replace the cutoff of the excluded volume
by another cutoff. In order to investigate the effect of
fluctuations we must introduce a finite range into the
potential and set U(k) = 1 — ¢?k?, where c? is a surface
tension coefficient which suppresses large wave vectors k.
We then set b(k) = b(1 — c?k?).

We consider the partition function in the form of Eq.
(2.8). We again group replicas using the RSB pat-
tern of Eq. (2.20). For replicas in the same group
we replace the quantity 3, 6(r® — R1)é(r? — Ry) by
p6(R1 — R3). On the mean-field level we will have
O 62 — R1)6(r’ — Ry))en = 0 for replicas in differ-
ent groups. In order to investigate fluctuations of the
Qqop order parameter and interactions between replicas
in different groups we need to expand the bilinear term
&, (k)®s(—k) for replicas o, 8 in different groups as fol-
lows:

< / D& (R) exp [;ﬂb? 3D / AR AR, @ (RY)U(R1 — RYS(xS — Ra)

3 A
(A,B) 1 34

X / dR2dR,®5(R5)U(R2 — RS)6(x? — Rg)] >

(4.1)
th

with (A, B) indicating a sum over all the possible different groups of replicas. By Fourier transformation

< / D%(k)exp[—vzZb(k)@a(km(—k)+u222 > b(kl)e“‘”?%(kl)b(kz)e*ﬂ?%(kﬂ]> . (42)
th

o k#0 o,0

i ki,ke7#0

We now group replicas according to the scheme of Eq. (2.20), expand the bilinear term for replicas in different groups.
The second-order term vanishes after the thermal average since replicas o and 3 belong to different groups. At fourth
order, only terms with pairs of replicas from the same group will survive. Hence, from Eq. (2.8) we obtain

< / D®, (k) exp [—VZ > Zpag(k)%(k)%(—k)]

A o,fEAkF0

X{HHQ_‘; ST YT b(ka)b(ka)b(ks)b(ka)ei®r T TG, (k1) @, (Ks)

(A,B) %7EA i,j ki,...,ks7#0

xei(kz.rf+k4-rg)(I)ﬁ(kz)<p5(k4)}> ,

(4.3)
th
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where P,p(k) = b(k)bas — b*(k)u?p. The first integral in Eq. (4.3) is the Gaussian integral that we calculated in
Sec. III. The result was given in Eq. (3.7). We will denote this as C(xo). For the calculation including the fourth-order
term we need to take the fourth variational derivative of the functional

P09 = [ PRoBexp| VS T T Pepl9Ba1085(—) +V I 3 Y hAMWS(). (4

A a,BEA k#0 k#0 A a€A

In the limit A — O this gives

54 F[h(k)]
8h& (k1)8h# (ka2)6hg (ks)6hg (ka)

= C(wo)[P)4, (k1)6(k1 + k3)[P"] f5(k2)6 (k2 + ka) (4.5)

and the integral of the fourth-order term will become

C(-’Eo)<“‘1 > > Zb2(k1)b2(k2)e“‘1'(’?"’I)e"k"('?"’g)[P"I]gv(kl)[P_l]ga(k2)> : (4.6)

kika (4,B) giysh i th

We will represent the elements of the inverse Parisi matrix P~!(k) as p(k) for the off-diagonal elements and p(k) for
the diagonal elements, where

_ v(k) ~ oy 1+y(k)(1 = zo)
P = S 0z 2™ %) = 3000 - 40’ i
with (k) = b(k)u2p. Then Eq. (4.6) becomes
n n -~
WO (;5 _ 1) 3 P06 0)(z0 = Deonll) + 2ol
X [(:co — 1)zop(kz) + xoﬁ(kz)] <Z eikl‘('?“"?)eikr(r?_r?)> . (4.8)
%3 th

By substitution of (4.7) in (4.8)

b(k1)b(k tea (e 1) _ika- (£ —1?
't Olza)(n=0) 2, 7 el 5 <Zek e ’)>t,.' (@)

The MPS transition temperature Ty, is the temperature at which the coefficient of the Gaussian term in (4.3) changes
sign. Before freezing zo = 1. Thus [1 — y(k)zo] ~ 0 near T,. Away from T, we can consider [1 — y(k)zo] ~ 1
independent of k. Then (4.8) separates as

4 4 n(n P iky-(r®—r2) ikg-(rP —r?)
(21 -1 1(r§—rg ;L —r}
b*u E C'(:vo)x0 (CEO ) [(zo )Zop + ToP) < E e e N

k1,k2#0 ,J

b2 4C _ . 3
_ru (1(1:0’3;:)2 o) <; 6(ri —rj )6(x? — rf)>th, (4.10)

[
with o and @ in different groups. The thermal (config- Expanding to the lowest nonvanishing order for xo and
urational) average in (4.10) is the number of common  taking 8f(xo)/8z¢ = 0, we obtain
contacts in different folds «, 3. The overlap is mainly

due to the contacts of neighboring monomers which is 1 s \Y?

neglected in the mean-field theory for Qos and becomes Zo = 5 (1 — €> (412)
important when the flexibility of the chain increases. We

denote this overlap as Ne where € is the small parameter and therefore the freezing temperature is

of our perturbation expansion. With this correction the

expression for the free energy becomes T. =Tr(1-¢)"?, (4.13)

where T is the freezing temperature derived on the level

fzo) _ In(1 —yxo) s ev’zo
n o T mb+ Tz of the mean field for Qqp in Sec. IIL

o o -——————-(1 ~zo)E (4.11)
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The fluctuations (Q2 ) due to overlaps between repli-
cas in different groups result in a decrease of the freez-
ing temperature. The more flexible the polymer chain
the more important the overlaps due to neighboring
monomer contacts. Therefore, with increasing flexibil-
ity the freezing temperature will decrease. However, the
temperature T, at which the MPS transition occurs is
independent of flexibility and at some critical flexibility
the MPS transition point will occur before freezing. We
then have to examine freezing on the background of mi-
crodomain structure.

We notice that near T, the k dependence of the term
(1 — v(k)xo] cannot be ignored. Then the k integral of
(4.8) must be taken including the contribution of (k).
First we take the configurational average. We recall that
this includes multiplication by the elastic term of Eq.
(2.3). The configurational average will give

) o ay 4 1
ezky(r,- —r; )ezkz-(r?—rf)> — .
(z IR

%7

(4.14)

The [1 — v(k)xo) term can be approximated by T + k?
where 7 = (T' — T,)/T,. Then the k integral is

/ dk;dk,
a?(k2 + K2) (K2 + 7)(K2 + 7)

i.e., diverges logarithmically near Tj,.

~Inr, (4.15)

[P2a0en[-VE ¥ T Paslia925(-)

A a,BEAk#0

furE S T %

(A B) a 'YEA ki,k2#0

V. FREEZING ON THE BACKGROUND
OF THE DOMAIN STRUCTURE

In this section we will consider the case of a polymer
flexible enough that the freezing temperature T, will be
shifted below the temperature T, at which MPS occurs.
T, is the temperature at which the Gaussian integral in
Eq. (2.11) diverges or, equivalently, the correlation func-
tion (mq(k)me(—k)) in Eq. (3.13) diverges. From now
on we refer to T, as the MPS transition temperature.

In this case we have a nonzero value of the order pa-
rameter ®(k) before freezing. The amplitude corresponds
to the degree of phase separation. The wave vectors de-
scribe the domain structure and the domain sizes. Start-
ing from the general expression in Eq. (2.8) for the n-
replica partition function we obtain the free energy in the
form of a Landau expansion around the mean-field value
of ®(k). We group replicas in n/z¢ groups correspond-
ing to the different folds introducing the same pattern of
RSB as before. This way we include the possibility that
the system will freeze after the MPS transition. This will
happen if 2o can become less than unity at some finite
temperature.

We consider Eq. (4.3). The condition of translational
invariance for the density of a maximally compact glob-
ule discussed after Eq. (2.10) implies k; = —k3 and
ko = —k4 for replicas in the same group. Under these
conditions we perform the thermal average. This is the
configurational average including the elastic term of Eq.
(2.3). Because of the later term the thermal average
over all conformations of replicas will introduce a fac-
tor e~k’e’li=il and after summation over all pairs of
monomers we obtain

b2 (k1)b%(k2)

az(k2 k2) <I>a(k1)<I).y(—k1)<I>ﬁ(k2)tI>5(—k2)}, (5.1)

where M is the number of all replica conformations of all groups and can also be written as exp(Nns/zg). We return
everything to the exponent and perform a mean-field calculation for ®,(k). The free-energy density per replica is

flzo; m(k)]

n k20

where b(k) = b(k) — b2(k)u2p. We have introduced m (k)
to denote the mean-field value of ®(k) independent of
the replica index and m2(k) =m(k)m(—k). The MPS
transition occurs at the temperature at which the coeffi-
cient of the quadratic term becomes negative for one or
more modes. The above expression for free energy can
be rewritten as

Z b2 (k1)b% (ko)

" ki,ka#0

= x_’; > [zob(k) — zo(zo — 1)b?(k)p2p)m? (k)

m? (ky)m® (ka), (5:2)

a2(k3 +k3)

Frosml) _ ;5™ 1b) - mob(k)u2elm?(k) —
n k20
e s B)ER(k)
+tg %o oo @208 +15)
><m2(k1)m2(k2). (5.3)
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The mean-field value will be calculated by optimiza-
tion of Eq. (5.3). It turns out to be more convenient to
differentiate with respect to

T (k) = 2b(k)®(k). (5.4)
Then Eq. (5.3) becomes
flzo; ¥ (k)] 1 TokP\ o2 s
S0 AR — 20 P2k - =
n ”ga(z;b(k) 4 ) () - =
4,3 2 2
+M Zo v 2(k12)‘11 (12(2) . (55)
32 k1,k2#0 a (kl +k2)
By variation 6(f/n)/6¥(k) = 0 we obtain
1 wizd U2(k,)
\I'(k){(——— —xouzp)p+ 0 5 =0
b(k) 8a? Lk’ + ki
(5.6)
One solution of this equation is
(k) = ToA(k — ko). (5.7)

where A is Kronecker’s delta. By substitution of this into
Eq. (5.5) and optimization with respect to ¥y and ko, we
find

_ (4/3)(1 = 9z0)a

p1/2b1/2$g/2u20 (5.8)
and
(1 —yzo) /2
ko| = LT T 5.9
ol = S22 (59
with v = bu?p.
From Egs. (5.4), (5.7), and (5.8) we have
(2/3)(1 — vZo)a
() = gy gty Ak — ko) (5.10)

reproducing the results obtained in [11] for o = 1. By
substitution of Egs. (5.10) and (5.9) in Eq. (5.3) we can
see that

b(l —yxo)3a? s

~ e (5.11)

and therefore the MPS transition is of third order. In
order to find the condition for freezing from Eq. (5.11)
we take (0f/0zp) = 0. Then

(5.12)

and setting v = +'/T we obtain the freezing transition
temperature at which zo = 1 as

1/2
Tc = 71 (1 - i"_c>

e (5.13)

or, since ¥y =T,

s/2¢
Tc = Ta (1 - —p—m;) .
Therefore, freezing is possible after MPS. The calculation
and the conclusions of this section are based on the fact
that we are close enough to the MPS transition temper-
ature T, so that (1 — yxo) is small, but also far enough

from this point so that a mean field with respect to ®,
gives satisfactory results.

(5.14)

VI. DISCUSSION

In the present work we solved the sequence model
in random heteropolymers making use of the replica
technique. We have predicted a frozen phase with the
same RSB scheme as in the solution of the independent-
interaction model. In a frozen phase with RSB there is a
small number of thermodynamically relevant conforma-
tions that dominate [27]. It was also shown [28] that there
is a significant probability that the ground-state confor-
mation will be nondegenerate. This single conformation
will be thermodynamically dominant in the frozen phase.
Therefore, we see that the frozen phase with RSB in the
sequence model also describes qualitatively the protein
unique structure.

In the mean-field approximation, according to this
RSB scheme the different folds (pure states) will not have
any common contacts and therefore the energies, given
by >_; ; Bi;j6(r; —r;) will be independent from each other

as in the REM. These different folds correspond to well-
defined minima in conformation space. Therefore, these
states form a discrete bottom part of the energy spec-
trum [7]. There are also the unfolded states which form
a continuum in the upper part of the spectrum.

In the two-letter sequence model, in addition to the
freezing order parameter Qg there is a one-replica or-
der parameter ®,. This parameter has the meaning of
local density difference between monomers of kind A and
kind B and describes microphase separation (MPS). In
Sec. II we have derived a coupling between these two
order parameters described by Eq. (2.11). When &, is
integrated out and a mean-field calculation is performed
with respect to Qag, freezing prevents MPS. This was
shown clearly in Eq. (3.13) and in Fig. 3 since the corre-
lation function (mq(k)mq(—k)) becomes independent of
temperature below 7.

In an early study [29] de Gennes had described the
effect of disorder introduced to a periodic block copoly-
mer. On the same level of approximation with our mean
field it was shown that MPS disappears when random-
ness increases beyond some threshold value related to the
period.

On the level of mean field, however, we neglect contacts
between monomers neighboring along the sequence. In
flexible chains these contacts cannot be ignored. In order
to take them into account we developed a method that
goes one step beyond mean field. This method was de-
scribed in Sec. IV. There we considered two folds from
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different groups which have no common contacts between
distant monomers, i.e., in the mean-field sense, but have
Ne common contacts between neighboring monomers ig-
nored in the mean-field approximation. In Eq. (4.13) we
have shown that an increase of € reduces the freezing tem-
perature T.. Then T, can be shifted below MPS. There-
fore, in flexible polymers MPS can occur before freezing.

A frozen phase can appear at lower temperature. This
new frozen phase has a domain structure with A- and B-
rich regions. Hence we have obtained a richer phase dia-
gram shown in Fig. 4. The maximally compact state G
is a homopolymericlike globule without definite structure
[22]). The transition from G to MPS is a very weak tran-
sition without latent heat and with a smooth increase of
the MPS order parameter ® from zero to a finite value.
On the level of mean field this is found to be a third-
order transition. The transition from G to the frozen
phase (FP) or the frozen phase with domain structure
(MPS+FP) is thermodynamically of second order, with-
out latent heat but with a jump in the order parameter
Q.
There is a critical flexibility at which T, = T,. The
behavior of the system in this area as well as the value of
this critical flexibility cannot be estimated by low-order
deviations from the mean field and interesting critical
phenomena may appear in this region.

In order to understand physically why freezing pre-
vents MPS in stiff polymers and why MPS occurs in flexi-
ble polymers we compare the “energy spectra” of stiff and
flexible polymers [Figs. 5(a) and 5(b)]. Freezing transi-
tion occurs when the system reaches a conformation that
corresponds to an energy level in the discrete part of the
spectrum of Fig. 5(a). The number of such conforma-
tions is of order one and therefore, at the freezing tran-
sition point T, the entropy per monomer becomes zero.
This implies that all the thermodynamic quantities stop

T=T,

Ty |
MPS

MPS+FP

flexibility

FIG. 4. Phase diagram for random copolymers. By G
we denote a compact globular state without definite fold.
The FP denotes a frozen phase without domain structure.
MPS denotes the microphase separation with A- and B-rich
microdomains. FP+MPS denotes a frozen state with mi-
crodomains. We see that for “flexible” chains freezing occurs
after phase separation on the background of a microdomain
structure. The shaded area is around the point where the
freezing transition temperature equals the MPS transition
temperature. The behavior of the system in this area cannot
be estimated by low-order corrections to mean-field theory.

EMPS

| I

() (®

~

FIG. 5. Energy spectrum of (a) a stiff polymer and (b) a
flexible polymer. EMmps is the energy threshold below which
structures with MPS exist. We distinguish the continuous
and discrete part of the spectrum. Freezing corresponds to
the transition from the discrete to the continuous part. The
gray color labels states with MPS.

to depend on temperature. Physically this means that
the system has reached the bottom of its conformation
set and there are no conformations with lower energies.
MPS conformations have low energies and for a stiff poly-
mer the energy corresponding to the MPS conformation
lies below the border of the spectrum. In other words,
there are no MPS conformations in the conformational
set of a stiff polymer. However, as flexibility increases
the number of conformations increases and the lowest-
energy level of the spectrum in Fig. 5 is shifted down.
At some critical flexibility it reaches a value of energy
corresponding to MPS. Below that point the conforma-
tional set of a polymer will also contain MPS conforma-
tions. These conformations will occupy the lower part
of the spectrum [Fig. 5(b)]. This includes the bottom
of the continuous part of the spectrum and all the dis-
crete part. In this case the decrease of the temperature
will lead first to MPS without freezing [transition from
the black to the gray part in the spectrum in Fig. 5(b)].
Further decrease of temperature leads to freezing to the
set of MPS frozen conformations [transition to the dis-
crete part of the spectrum in Fig. 5(a)]. Therefore we see
that increase of the flexibility decreases the temperature
of the freezing transition T,. When T, becomes lower
than the MPS transition temperature T, the scenario of
transitions is described by Fig. 5(b) rather than by Fig.
5(a).

‘We notice that in order to perform the disorder average
in Eq. (2.5) we considered a Gaussian distribution for
the characteristic values {o;}. Instead, if we had taken
o; = 1 we would have obtained a term

> [cosh (21;2 / dR 6(r® — R)@a(R))] (6.1)

and with high-temperature expansion to the order 2 ~
1/T? we get the same Gaussian integral as in Eq. (2.11).
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The higher-order terms of the expansion were neglected.
Here we will discuss why these terms do not change the
results presented above.

First we examine the effect on the RSB scheme pro-
posed. The ®* term includes multiple replica coupling

S 6(rg — R1)8(rf — Rp)6(r] — Rs)é(r! — Ra). (6.2)

In three dimensions this term does not change the argu-
ments that lead to the step-function type of Q(x) since
it contributes to the free energy by a term 1/RS. There-
fore, the free energy still has only two maxima at scales
Rt = o0 and Rt = U1/3.

We must also examine the effect of these fourth-order
terms to the T,.. Since ®(k = 0) = 0 we find that the only
nontrivial term is ®4(R). We calculate the contribution
of this term to the free energy at order 1/T%. In a way
similar to that described for the calculation of Eq. (4.5)
we find that this contribution to the free energy is

p(20)* [1+7(1 = 20)]”
nC(20) =13 [ b(1—7x0)0] '

It seems that the fourth-order term due to discreteness
has the same effect as the fourth-order term in Eq. (4.9)
due to the polymeric effect. However, these terms become
important near T,. Then from Egs. (4.14) and (4.15) we
see that the polymeric term is much more important and
the effect of the other term can be ignored.

(6.3)

The sequence model is a more realistic description of
heteropolymers than the independent-interaction model.
Also it predicts new phases impossible to reveal in the
independent-interaction model. It is remarkable that the
RSB scheme in the sequence model is the same as in
the independent-interaction model. As discussed above,
this means that the REM is a good approximation of the
system. However, the interpretation of the xo parameter
here may not be straightforward as in the independent-
interaction model as shown in [28].

On the basis of the results obtained here we can briefly
discuss the anticipated behavior of a two-letter random
copolymer with short-range correlations along the se-
quence. In this model the contacts between neighbors
cannot be ignored. It should be expected that they are
very important so that MPS will precede freezing. The
MPS transition in this model was described in [18,19)
but the freezing transition, if any, is a very interesting
problem which is under current investigation.
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